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Obtaining diffraction quality crystals remains one of the major

bottlenecks in structural biology. The ability to predict the

chances of crystallization from the amino-acid sequence of the

protein can, at least partly, address this problem by allowing

a crystallographer to select homologs that are more likely to

succeed and/or to modify the sequence of the target to avoid

features that are detrimental to successful crystallization. In

2007, the now widely used XtalPred algorithm [Slabinski et al.

(2007), Protein Sci. 16, 2472–2482] was developed. XtalPred

classifies proteins into five ‘crystallization classes’ based on a

simple statistical analysis of the physicochemical features of

a protein. Here, towards the same goal, advanced machine-

learning methods are applied and, in addition, the predictive

potential of additional protein features such as predicted

surface ruggedness, hydrophobicity, side-chain entropy of

surface residues and amino-acid composition of the predicted

protein surface are tested. The new XtalPred-RF (random

forest) achieves significant improvement of the prediction of

crystallization success over the original XtalPred. To illustrate

this, XtalPred-RF was tested by revisiting target selection from

271 Pfam families targeted by the Joint Center for Structural

Genomics (JCSG) in PSI-2, and it was estimated that the

number of targets entered into the protein-production and

crystallization pipeline could have been reduced by 30%

without lowering the number of families for which the first

structures were solved. The prediction improvement depends

on the subset of targets used as a testing set and reaches 100%

(i.e. twofold) for the top class of predicted targets.
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1. Introduction

The high failure rate in experimental protein structure

determination by crystallographic methods is still one of the

greatest challenges in structural biology. In fully automated

gene-to-structure pipelines, success rates between target

selection and structure deposition hover around 5%

depending on the family, type and source organism (bacteria

or eukaryote) of a protein. Laboratories that focus on indi-

vidual high-profile proteins achieve much higher success rates

but typically at a significantly higher cost, both in terms of time

and materials, spent on multiple crystallization attempts on a

range of construct variants. The cost and time lost on unsuc-

cessful structure-determination attempts impedes the overall

progress in structural biology and contributes significantly to

the high average cost of determining protein structures. Esti-

mates from JCSG suggest that up to 70% of the average cost

of solving any protein structure arises from the costs of failed

attempts. The ability to select homologs and/or the design of

constructs or mutants that lead to better diffracting crystals

would increase the success and lower the cost of protein
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structure determination, allowing structural biology labora-

tories to tackle a broader range of biologically important

targets.

Because of the importance of the problem, efforts to

understand and improve the protein crystallization process

started decades ago and continue today. Initially, crystal-

lization was viewed as a purely stochastic phenomenon and

prediction of crystallization was essentially considered to be

impossible. Initial data-mining efforts (Carugo & Argos,

1997), and a growing body of anecdotal evidence collected in

individual laboratories and shared between crystallographers,

led to the recognition that protein surface properties, unique

to each protein, critically affect crystallization. This in turn led

to procedures designed to change such properties, for instance

by the reduction of surface entropy by protein engineering

(Garrard et al., 2001; Goldschmidt et al., 2007; Derewenda,

2011). However, most of these efforts were developed by

analysis of biased positive-only training sets, i.e. crystallo-

graphic structures of proteins stored in the Protein Data Bank

(Berman et al., 2000). This situation changed when the Protein

Structure Initiative (PSI) started producing and screening

large sets of proteins and reporting on both successes and

failures. These data were collected in the PSI TargetDB

database (Chen et al., 2004), which enabled large-scale data-

mining for protein crystallization (Christendat et al., 2000;

Canaves et al., 2004; Goh et al., 2004; Smialowski et al., 2006).

In 2007, our laboratory developed the XtalPred algorithm

(Slabinski et al., 2007) for prediction of crystallization success

from the statistical analysis of seven physicochemical features.

Since then, XtalPred and other similar algorithms such as

ParCrys (Overton et al., 2008), CRYSTALP2 (Kurgan et al.,

2009), MetaPPCP (Mizianty & Kurgan, 2009), PXS (Price et

al., 2009), SVMCRYS (Kandaswamy et al., 2010), the MCSG

Z-score (Babnigg & Joachimiak, 2010) and PPCpred

(Mizianty & Kurgan, 2011) have allowed users to assess the

probability of successful structure determination prior to

performing any experimental work and to modify or adjust

their target-selection strategies. This advance has resulted in

a significant enhancement of the efficiency and productivity of

Structural Genomics efforts (Jaroszewski et al., 2008; Savitsky

et al., 2010; Gabanyi et al., 2011; Xiao et al., 2010) and

importantly also helped many individual structural biology

groups (Lee et al., 2010; Gómez Garcı́a et al., 2011, 2012;

Oyenarte et al., 2011). A myriad of users have submitted

thousands of potential targets to the XtalPred server, with

requests coming both from Structural Genomics centers and

from small structural biology laboratories.

It has recently been shown that the random forest method is

highly suitable for crystallizability prediction (Jahandideh &

Mahdavi, 2012), suggesting a path to improve the prediction

accuracy of XtalPred. A new large data set extracted from the

new PSI TargetTrack database (http://sbkb.org/tt/) has allowed

us to also test additional physicochemical features for their

correlation with structure-determination success. In this study,

we describe the new XtalPred-RF algorithm and test it on

several benchmarks, as well as illustrate its benefits by esti-

mating how applying it to our original target selection

procedures would have increased the productivity of our

center.

It is important to note that while XtalPred and other

algorithms for prediction of crystallization success were

developed by groups involved in and using data from high-

throughput crystallization projects, their application is not

limited to such groups. Individual laboratories dealing with

groups of homologous proteins can benefit from optimizing

their selection strategy, and save valuable time and cost.

Note: in the following sections, we use the term ‘crystal-

lizability’ as a shortcut for the ‘probability of yielding well

diffracting crystals that allow structure determination’.

2. Materials and methods

We followed three strategies to improve the XtalPred algo-

rithm. First, we tested several machine-learning approaches on
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Table 1
The preparation of the training and test sets from the PSI TargetTrack database.

Filtering step Details No. of targets after this step

The initial positive set (crystallographic structures) At least at Crystal Structure stage as of August 22, 2012.
Lengths between 50 and 800 amino acids.

4924

The initial negative set (targets which failed to crystallize) Purified stage as of January 1 2011. Excluded: crystallized
targets (of any quality), NMR targets, targets stopped
because duplicate target was found, targets which might
have been stopped because of a related structure in the
PDB, targets prepared for biological assays. Lengths
between 50 and 800 amino acids.

21898

Balancing training and testing data by reducing negative set Clustering at 66% sequence identity using CD_HIT (Li &
Godzik, 2006) and random selection of 1/3 of targets

5691

Removing ‘trivial’ prediction targets Excluded: targets with predicted signal peptides and trans-
membrane helices (such targets have practically no chance
of crystallizing in standard setups as full-length constructs)

Positive set, 4710;
negative set, 4795

Eliminating sequence similarity between training and testing
set

The PSI-BLAST program was used to put groups of similar
sequences into either the training set or the testing set.

Training positive set, 2265;
training negative set, 2355;
testing positive set, 2445;
testing negative set, 2440

Adjusting the percentage of predicted positives by under-
sampling

Training sets with positive subset reduced by random
selection to predict (approximately) 5, 10, 20, 30, 40, 50, 60,
70, 80 and 90% of positives.



the original data used to develop the XtalPred method.

Second, we updated the training and testing sets, as the

previous sets only contained data collected before 2005, by

adding all data collected up to 2011 or 2012 (see Table 1).

Finally, we introduced and evaluated several additional

physicochemical features of the (predicted) protein surface. In

subsequent sections, we describe the details of each strategy.

The following definitions of the accuracy, specificity, sensitivity

and Matthews correlation coefficient (MCC) were used in this

publication,

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ;

Specificity ¼ TN=ðFPþ TNÞ;

Sensitivity ¼ TP=ðTPþ FNÞ;

MCC ¼
TP � TN� FP � FN

½ðTPþ FPÞðTPþ FNÞðTNþ FPÞðNTþ FNÞ�1=2
;

ð1Þ

where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives and FN is

the number of false negatives.

2.1. Machine-learning methods

XtalPred (Slabinski et al., 2007) used a simplistic approx-

imation of independent probabilities, i.e. the expert pool

method. Here, we test several machine-learning methods: (i)

the support vector machine (SVM), (ii) the artificial neural

network (ANN) and (iii) the random forest (RF) methods,

which, at least in principle, are better suited to take into

account complex multi-dimensional interactions between

different physicochemical variables used in crystallization

prediction.

Support vector machine (SVM) is a statistical-learning-

theory-based classification algorithm (see Vapnik, 1995, 1998).

In this study, we applied the tune function using the e1071

package of the R environment (v.2.11-1) to develop a binary

SVM-based method. The tune function uses a grid search to

find the optimum structure of SVM.

Artificial neural network (ANN) is a powerful nonlinear

predictor inspired by biological neural networks (Bishop,

1995). In order to determine the optimum structure of the

network, we constructed a large number of networks, varying

the number of hidden neurons, the number of iterations and

the learning rate. Several training algorithms such as gradient

descent, resilient back-propagation, quasi-Newton and

conjugate gradient were tested. The optimization resulted in

an architecture characterized by one output neuron repre-

senting the crystallizability of a protein (0 for noncrystallizable

protein and 1 for a protein with solved structure: see the note

at the end of x1), one hidden layer containing six neurons, and

an input layer containing eight neurons corresponding to the

sequence parameters used in the original XtalPred training

set. The best result was obtained using the conjugate-gradient

training algorithm. The network was trained perfectly after

2000 iterations. The optimal learning rate was found to be 0.2.

The program used to construct the neural networks was

written in MATLAB v.7.14 (R2012a).

The RF algorithm (Breiman, 2001) is an advanced machine-

learning method that has been successfully applied to various

biological problems (Dı́az-Uriarte & Alvarez de Andrés, 2006;

Svetnik et al., 2003; Jiang et al., 2007; Kandaswamy et al., 2011).

RF utilizes hundreds or thousands of independent decision

trees to perform classification. Each of the member trees is

built on a bootstrap sample from the training data using a

random subset of available variables. RF is particularly

suitable for mining high-dimensional and noisy data (Fang

et al., 2008, 2009). In this study, we used the RF algorithm

implemented by the randomForest (v.4.6-2) R package (Liaw

& Wiener, 2002). The number of trees and stepFactor were set

to 1000 and 2, respectively. For the other parameters of the RF

method, we used default values as provided by the R package.

2.2. The training and testing data sets

The original XtalPred was developed in 2007 (Slabinski

et al., 2007), and today much larger data sets are available

through the PSI TargetTrack database (http://sbkb.org/tt/).

However, to make them useful for the purposes of the training

of machine-learning methods, they need to be appropriately

processed.

2.2.1. Balancing the data sets. In classification problems,

the proper selection of the training data considerably affects

the classification accuracy. In most cases, balanced data sets

with equal counts of all classes are optimal for training.

However, the data in real applications often have an imbal-

anced class distribution, i.e. most of the data are in one class

(the majority class). Unfortunately, if the data used for

training have a specific ratio between classes, the classifier’s

predictions tend to have a similar ratio between classes.

Moreover, if the crystallization success is 5%, a classifier could

achieve 95% accuracy by predicting failure for all of the

targets. Therefore, it is important to adopt methods suitable

for classification in imbalanced data problems (Yen & Lee,

2009). The two most common approaches to deal with the

class-imbalance problem are over-sampling and under-

sampling techniques. The over-sampling approach increases

the number of minority class samples to reduce the degree of

imbalanced distribution. In contrast, in the under-sampling

approach one reduces the number of samples in the majority

class (Yen & Lee, 2009). The under-sampling technique has

recently been used in structural bioinformatics projects

(Zhang et al., 2012; Yu et al., 2013). Generally, the perfor-

mances of over-sampling approaches are worse than those of

under-sampling approaches, so here we applied the under-

sampling approach to address the data imbalance. In the case

of crystallizability prediction, the majority class corresponds

to a negative training set (crystallization failures). In order to

obtain a balanced training set, we reduced the negative set by

clustering and random selection (see x2.2.3 below and

Table 1).

2.2.2. Using RF for multiple crystallizability class predic-
tion. The original XtalPred method based on the expert pool
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approach provided a numerical score, which made it possible

to rank targets by their predicted crystallizability (see the note

at the end of x1) score and subsequently to group targets into

multiple target ‘classes’. This would not be directly available

from the XtalPred-RF method since the RF classifier provides

only two tiered (positive and negative) predictions. However,

for practical purposes, the ability to select the top 5, 10 or 20%

of the most promising targets is very important. In order to

make it possible to group targets into multiple crystallizability

classes, we retrained the RF classifier, adjusting the percen-

tage of predicted positives to a desired level using the under-

sampling technique described in the previous section. Thus,

the XtalPred-RF method consists of a series of independent

RF classifiers trained on differently balanced training sets,

which are then used to identify classes of targets with different

probabilities of successful structure determination. This

approach allowed direct comparison with target classes

calculated using the existing XtalPred method (see Fig. 4a)

and provides more useful information to the user.

2.2.3. Procedure for preparation of the training and testing
sets. The detailed preparation of the training and testing sets

from the TargetTrack (http://sbkb.org/tt/) database involved

several steps (see Table 1). The preparation of the positive set

is straightforward (targets at the Crystallographic Structure

stage from the PSI TargetTrack database), while the

preparation of the negative set requires the use of additional

filters to eliminate targets that did not fail in crystallographic

trials but were abandoned for other reasons. The size of the

negative set was also reduced by the under-sampling method.

For details, see Table 1. Lists of the training and testing sets of

targets used here are available from the XtalPred server at

http://ffas.burnham.org/XtalPred/data.tar.

2.2.4. Eliminating the risk of overfitting. The application

of advanced machine-learning methods increases the risk of

overfitting, or in other words obtaining artificially good results

that would not be reproduced in real-life applications. The

most likely causes of overfitting include: (i) a small training

set, (ii) noise in the data and (iii) the inclusion of irrelevant

features in the data. To avoid these problems, we (i) used a

larger data set in comparison with the original XtalPred data

set and (ii) avoided irrelevant features by testing the effect of

adding novel features on the performance of the method. In

the case of sequence data, overfitting would correspond to

direct ‘memorization’ of individual sequences and ‘predicting’

crystallizability based on close sequence similarity (preferably

the machine-learning method ‘learns’ and then recognizes

protein features rather than individual sequences). Thus, we

split the initial data set into training and testing subsets using

different sequence-similarity cutoffs and then retrained and

retested the same prediction method (RF) with the same set of

protein features. We did not observe any substantial changes

in performance as measured by the MCC when we used a less

stringent cutoff for separating the training and testing sets

(MCC changes were below 3% and did not show any

systematic trend). In order to completely eliminate the risk of

overfitting in all of our tests, we used the most stringent

separation cutoff based on the PSI-BLAST (Altschul et al.,

1997) algorithm. This means that the sequences in our training

set do not have any similarity detectable with PSI-BLAST to

any sequence in our testing set.

2.3. Calculation of features of the predicted protein surface

We predicted the relative surface accessibility (RSA) for

each residue of each target sequence using the NetSurfP

algorithm (Petersen et al., 2009) and tested two methods of

calculating features of the predicted surface: (i) simple aver-

aging over residues with exposed (E) status as predicted by

NetSurfP and (ii) averaging over all residues but using values

of the predicted relative surface area (RSA) as weights (see

equation 2). Method (ii) led to significantly better crystal-

lizability predictions and was consequently used in the final

version of XtalPred-RF.

�ff ¼
PN

i¼1

fiRSAi=
PN

i¼1

RSAi; ð2Þ

where �ff is the value of the protein feature averaged over the

protein surface, fi is the feature’s value for residue i and RSAi

is the relative surface accessibility for residue i. N is the total

number of residues in the protein.

2.3.1. Introducing surface ruggedness. One can anticipate

that the number of protrusions and cavities on the protein

surface may have an impact on crystallizability. We usually do

not know the shape of the protein surface prior to structure

determination but we can, to some extent, predict whether it is

more or less ‘rugged’ than the average expected for a protein

of a given size. We introduced surface ‘ruggedness’ defined by

a simple formula: as a ratio between surface area calculated as

a sum of absolute solvent accessibilities of individual residues

(as predicted by NetSurfP) and the total accessible area

expected for a protein of a given molecular mass (statistics

calculated by Miller et al., 1987; see equation 3). For proteins

for which structure can be predicted with some accuracy by

fold prediction or comparative modeling, the predicted
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Figure 1
Performance comparison of machine-learning methods versus the expert
pool method used in XtalPred. The definitions of sensitivity, specificity,
accuracy and MCC are given at the beginning of x1 (equation 1).



solvent accessibilities can in principle be improved, but as a

first approximation, we decided to use the NetSurfP predicted

values.

SR ¼ AN=AMJLC; ð3Þ

where SR is the surface ruggedness, AN =
PN

i¼1 SAi is the total

accessible surface calculated by NetSurfP, AMJLC = 6.3M0.73

is the accessible surface predicted based on molecular mass

(Miller et al., 1987), SAi is the predicted absolute solvent

accessibility of residue i and M is the molecular mass of the

protein.

3. Results

3.1. Application of advanced machine-learning methods

The current version of the XtalPred algorithm (Slabinski et

al., 2007) uses the expert pool method (Genest et al., 1984) to

combine probability distributions calculated for individual

protein features and thus relies on the assumption that these

probabilities are independent. This is a rather crude approx-

imation, since most of the proteins features are likely to be

correlated (for instance, more hydrophilic proteins may

contain more structural disorder, larger proteins tend to be, on

average, more hydrophobic etc.) and it is possible that some

effects may be conditional (the impact of pI is more significant

for small proteins etc.). In such situations, machine-learning

approaches typically provide better prediction accuracy.

Indeed, in our tests, all of the machine-learning techniques

used (i.e. SVM, ANN and RF), when trained on the same set

of protein features and the same training set as the original

XtalPred algorithm (Slabinski et al., 2007), at least slightly

surpassed the original XtalPred results, with the RF method

yielding the best results. The MCC (Matthews, 1975) improved

twofold compared with the original XtalPred results (0.36

versus 0.18). Fig. 1 compares the performance of machine-

learning methods versus the expert pool method (as used in

the original XtalPred). The MCC (Matthews, 1975; see equa-

tion 1) is universally used in machine learning as a measure of

the quality of binary (two-class) classifications. The MCC

varies between �1 and 1, where �1 indicates that all predic-

tions are wrong, 0 means that the predictions are comparable

to random selection and an MCC of 1 means prefect predic-

tion. The MCC does not strongly depend on the overall

percentage of positive or negative predictions given by the

method and, because of this, it can be used to compare

predictions using different methods. [Note: the MCC is not

related to the Matthews coefficient (Matthews, 1968) used in

crystallography, other than being proposed by the same

author.]

3.2. Including features of the predicted protein surface in
crystallization predictions

The features of the protein surface are expected to have a

greater impact on protein crystallizability than features of the

protein core. For instance, we expect the percentage of serine

residues on the protein surface to have a greater impact on
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Figure 2
Correlation of the features of the predicted protein surface with the
likelihood of crystallization. (a) Surface hydrophobicity. (b) Surface side-
chain entropy. (c) Surface ruggedness. Targets from the data set were
grouped into bins according to the values of these features. The bar
graphs (associated with the left axis of the graph) show the number of
successfully determined X-ray structures (blue) and the number of
crystallization failures (gray) in each bin, respectively. The estimated
likelihood of crystallization in each bin is depicted by a black line
(associated with the right axis of the graph).



protein crystallization than the

percentage of serine residues in

the protein interior. Unfortu-

nately, the protein surface is

usually unknown prior to struc-

ture determination. However, as

we show here, features of the

predicted surface that could be

calculated directly from the

sequence of the protein can

provide a good approximation, at

least in a statistical sense, to those

of the actual surface. The histo-

grams shown in Fig. 2 illustrate

the correlation of three features

of the protein surface with protein

crystallizability and Table 2 shows

the cumulative contributions of

these features to the prediction

using the RF method.

The initial set of features

included the variables used in the original XtalPred algorithm,

i.e. sequence length, isoelectric point, gravy index, the longest

disordered region, instability index, percentage of coil struc-

ture, coiled coils and insertion score (see Table 1 of Slabinski

et al., 2007). When this initial set of features was used to train

the RF classifier, it resulted in an accuracy, sensitivity, selec-

tivity and MCC of 68, 72, 66 and 36% (see equation 1),

respectively, when tested on the testing set. Subsequently, we

used this result as the reference for evaluating the improve-

ment in prediction from adding novel features as predictive

variables. We decided to focus on the features of the predicted

protein surface (here predicted using the NetSurfP method;

Petersen et al., 2009). We tested two ways of calculating

(averaging) features of the protein surface as described in x2.

The surface features calculated using the weighting method

led to a better improvement in the prediction (as measured by

the MCC and other parameters) compared with averaging

only over predicted exposed residues. The improvement from

adding surface entropy, hydrophobicity and ruggedness

calculated as weighted averages (see x2) was indicated by

increases in the MCC and other measures of prediction

performance. The single feature which provided the largest

contribution to the improvement in prediction was surface

ruggedness (as shown in Table 2, amino-acid composition had

a greater impact on the prediction improvement but is

described by 20 parameters, while surface ruggedness is

described by a single parameter).

3.3. Evaluating the importance of individual features

The RF method provides several measures of the impor-

tance of individual predictors (variables). Here, we used the

Gini importance index to evaluate the importance of 48

variables included in the optimized version of XtalPred-RF

(see Fig. 3). The most important individual variables include

surface ruggedness, the length of the longest predicted
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Figure 3
The importance of different variables (protein features) used as
predictors in the random forest method provided by the importance
function (Gini Index) from the random forest algorithm.

Table 2
The effect of adding new features on the prediction of crystallizability (see the note at the end of x1).

Definitions of accuracy, specificity, sensitivity and MCC are given at the beginning of x2 (equation 1).

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

MCC
(%)

Initial set of features
Length, gravy, pI, instability index, predicted disorder,

insertion score
68.0 72.0 66.0 36.0

Added input features for random forest method �Acc. �Spe. �Sens. �MCC

Hydrophobicity of the predicted surface (‘surface gravy’)
(averaged using solvent accessibility; see x2)

0.6 4.5 �2.0 2.8

Surface entropy (averaged using solvent accessibility;
see x2)

1.0 0.4 1.7 3.6

Surface ruggedness (see x2) 1.9 0.3 3.7 6.7
Amino-acid composition of the predicted surface

(averaged using solvent accessibility; see x2)
2.9 4.1 1.6 10.3

Overall amino-acid composition 1.4 1.7 1.1 4.9

Current best set of features
Length, pI, instability index, predicted disorder, insertion

score, surface hydrophobicity, surface entropy, surface
ruggedness, surface amino-acid composition, overall
amino-acid composition

74.0 78.0 69.0 47.0



disordered fragment and the overall percentage of serine

residues in the protein sequence. The percentage of glycine

and valine residues as well as the insertion score (the

percentage of gaps calculated in the multiple sequence align-

ment of sequences homologous to the target; see Slabinski et

al., 2007) were also recognized as important predictors of the

crystallizability of a protein (see x4).

3.4. Revisiting the PSI-2 Pfam family draft

As described in x2, we defined target classes by XtalPred-

RF using the under-sampling technique. This allowed a direct

comparison of target classifications by XtalPred and XtalPred-

RF on the testing set (prepared as described in x2.2.3 and in

Table 1). As expected, classification by XtalPred-RF is clearly

better, as indicated by significantly higher success rates in the

top target classes and lower success rates in the bottom classes

(see Fig. 4a). However, the testing set contained a high

percentage of positive cases, and the impact of using XtalPred

can be more realistically evaluated by applying it to the real

target-selection problem.

To fully illustrate the benefits of using XtalPred-RF for

target selection in a ‘real-life’ application, we performed an in

silico experiment in which different target-selection methods

were applied to targets from 271 Pfam families assigned to

JCSG by the PSI ‘Pfam Target draft’ which took place in 2005.

In this draft, the PSI Centers selected over 1300 largest Pfam

families with no structural coverage and distributed them

between four PSI production centers (Dessailly et al., 2009).

Between 2005 and 2010, JCSG selected 3471 targets, solving

65 structures, including the first representatives of 52 Pfam

families (for some families, JCSG solved more than one

representative). The overall success rate for this group of

targets was 1.9%, but this also includes a substantial number

of targets for which the work was stopped because a structure

of a homologous protein had already been solved. Table 3

research papers

Acta Cryst. (2014). D70, 627–635 Jahandideh et al. � XtalPred-RF 633

Table 3
Application of different crystallizability prediction methods to the
problem of solving the first structures from 271 Pfam families assigned
to the JCSG in 2005.

(a) Random, XtalPred and XtalPred-RF.

Solved structures/‘solved’ families

Top scoring targets used (%) Random XtalPred XtalPred-RF

5.3 3/3 9/7 18/12
10.2 5/5 13/8 28/22
19.7 12/12 19/11 34/26
30.0 18/18 30/21 43/34
39.7 23/22 35/26 48/37
50.2 30/27 45/35 50/39
60.3 37/31 49/38 54/43
70.2 45/34 54/42 60/49
79.7 52/41 58/46 65/52
89.9 60/49 63/50 65/52
100.0 65/52 65/52 65/52

(b) Multistep XtalPred-RF.

Solved structures/‘solved’ families

Top scoring targets used (%) Multistep XtalPred-RF

5.3 18/12
9.4 26/22
17.5 30/26
27.4 38/34
35.3 40/37
44.2 43/40
52.9 46/43
61.8 53/50
70.6 55/52

Figure 4
(a) Comparison of the success rates obtained on the testing set for target
classes defined by XtalPred (blue line) and XtalPred-RF (magenta line).
Percentile ranges for five target classes of the original XtalPred are
depicted as colored bars above the x axis. Target classes defined by
XtalPred-RF were grouped into pairs to allow direct comparison with five
classes from XtalPred. (b) Revisiting the PSI-2 target draft, where the
JCSG solved 65 structures including the first structural representatives of
52 Pfam families using a target pool of 3471 proteins. The graph shows
the percentage of families (solid lines) and structures (dotted lines) as a
function of the percentage of selected protein targets. Green lines, targets
selected by random; blues lines, targets selected using XtalPred; red lines,
targets selected using XtalPred-RF as introduced in this manuscript; black
lines, targets selected in multiple steps using XtalPred-RF (selection of
the top 5% of targets, elimination of solved families from the target pool,
selection of the next best 5% of targets etc.; see x4).



shows the number of targets that had to be processed to

achieve a specific number of structures in three different

scenarios: if targets were selected randomly, by the XtalPred

method and by the XtalPred-RF method described in this

publication. The results indicate that both target-selection

methods have a clear advantage over random target selection,

as indicated by a lower number of targets needed to achieve

the same number of solved structures and first representatives

of protein families for the same number of selected targets

(see Fig. 4b). Targets selected with XtalPred-RF reached a

success rate approximately two times higher than targets

selected with XtalPred and up to six times higher than

randomly selected targets (top row in Table 3a). In order to

eliminate the risk of overfitting, all 3471 JCSG targets used in

the 2005 target draft were excluded from the training set used

in this experiment.

4. Discussion

It has already been demonstrated that the application of

advanced machine-learning methods and especially the RF

classifier improves crystallizability prediction (Jahandideh &

Mahdavi, 2012). However, the RFCRYS method described in

that publication used only a limited set of protein features and

was tested on a relatively small test set. Our results confirm the

usefulness of the RF method on a large updated test set and

prove that it is not the result of overfitting or direct memor-

ization of close similarities between sequences of proteins in

the training and test sets.

We selected RF as the prediction method and subsequently

tested the usefulness of several additional variables as

crystallizability predictors, focusing on the features of the

predicted protein surface. The inclusion of protein surface

features, even if only predicted from sequence information

alone, significantly improves the prediction as suggested by

crystallization probability distributions for individual vari-

ables (Fig. 2) and confirmed by overall prediction improve-

ment (Table 2) and by the importance of individual features as

evaluated by the Gini importance index (Fig. 3). It is necessary

to note here that the importance measures included in the RF

method (and most other importance measures) are unavoid-

ably influenced by interactions between variables (Liaw &

Viener, 2002). In fact, the variables (predictors) used by

XtalPred-RF are expected to be correlated. For instance,

surface features such as surface ruggedness, surface hydro-

phobicity and surface entropy are simple functions dependent

on tabularized values for residue types and/or the predicted

solvent exposures of individual residues (see equations 1 and

2). In particular, surface entropy is likely to be correlated with

surface ruggedness since both tend to assign high values to

long and branched side chains. Thus, the impact of individual

percentages of such residues on crystallizability may be

underestimated by the Gini importance index since they are

already taken into account in surface entropy. While RF (in

contrast to the previously used expert pool) automatically

takes such correlations into account and effectively reduces

the individual contributions of correlated variables, the Gini

importance of an individual variable may be diminished if

a correlated variable is already included in the prediction

method. Therefore, to gain independent insight, the impact

of individual variables was also assessed by one-dimensional

histograms of negative and positive targets (Fig. 2).

As clearly indicated by the histogram shown in Fig. 2(c),

surface ruggedness has a strong negative impact on the crys-

tallizability of a protein; the probability of target crystal-

lization for low ruggedness values is around 0.7, but for high

ruggedness values it drops to 0.1. This is consistent with the

nearly 7% increase in the MCC resulting from adding this

feature to the predictors used by RF (it is noteworthy that this

significant improvement occurs despite that fact that it was

added after adding surface entropy, which is likely to describe

similar features of the protein surface). One-dimensional

histograms (Figs. 2b and 2c) suggest why surface ruggedness

may have a higher overall impact on protein crystallizability

than surface entropy; while both features have a high impact

on crystallizability, surface ruggedness has a strong impact on

a larger number of targets (surface ruggedness below or above

1 in Fig. 2c), while surface entropy seems to have strong

impact mostly at the extremes of its distribution (surface

entropies below �1.3 or above �1.2 in Fig. 2b).

As expected, protein surface features have an impact on the

crystallization of a protein, and including them (even in a very

simple form) in the prediction process leads to significant

improvements in crystallizability prediction. By adding these

features and by applying advanced data-mining methods, we

developed an improved crystallizability prediction method,

XtalPred-RF. It is publicly available from the XtalPred

server at http://ffas.sanfordburnham.org/XtalPred-cgi/xtal.pl.

XtalPred-RF is expected to further reduce the cost of structure

determination in cases where an optimal target(s) can be

selected from a larger pool of proteins.

The potential impact of the prediction improvements

implemented in XtalPred-RF for structural characterization

of protein families was demonstrated by revisiting (in silico)

the target-selection and structure-determination efforts which

followed the ‘Pfam Family Draft’ performed by the PSI high-

throughput centers in 2005. The advantage of XtalPred-RF

over XtalPred and random target selection is most significant

when small numbers of individual protein targets are selected

from a very large pool of available targets, since it makes it

possible to select targets from the optimal classes where the

XtalPred-RF resolution is higher. In order to improve the

efficiency in targeting protein families even further, one can

consider a multistep target selection in which a small number

of targets are selected first and families with representatives

solved in this first step are then excluded from the pool of

targets selected in the next step etc. According to our tests, the

application of such a procedure with ten steps (corresponding

to adding subsets of targets listed in Table 3a) would lead to

the solution of first structural representatives of all eventually

solved Pfam families using just 70% of the individual protein

targets used in the real target selection performed between

2005 and 2010 (see Table 3, Fig. 4b). It would also allow the

solution of first representative structures from half of the
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targeted Pfam families by using only about 1/6 of the indivi-

dual proteins available in the genome pool. The most dramatic

improvement of crystallizability prediction was observed for

the top class of targets, where the targets selected using the

orginal XtalPred method yielded nine structures while the

same number of targets selected using XtalPred-RF yielded 18

structures (see Table 3a).

The examples presented in this manuscript focus on the

application of XtalPred-RF to large-scale crystallographic

structure determination efforts, but it can provide useful

information for any structural biology group interested in the

structural characterization of a protein family. A typical

application of the XtalPred-RF server for such a user would be

to prioritize a series of homologous targets according to likely

crystallization success or to search for such targets in other

bacterial genomes (the XtalPred server has such an option).

At the same time, it is important to note that all training and

test sets used in this study consist of data from prokaryotic

proteins. Therefore, one can expect that XtalPred-RF would

reach optimal performance for this type of proteins. Feedback

from our users and literature references indicate that XtalPred

predictions are increasingly being used for construct design in

eukaryotic proteins, and we are now working on expanding

the training data sets to include eukaryotic proteins and on

expanding the XtalPred-RF algorithm to enable the design of

optimal construct boundaries.
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Oyenarte, I., Lucas, M., Gómez Garcı́a, I. & Martı́nez-Cruz, L. A.

(2011). Acta Cryst. F67, 318–324.
Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M. & Lundegaard,

C. (2009). BMC Struct. Biol. 9, 51.
Price, W. N. et al. (2009). Nature Biotechnol. 27, 51–57.
Savitsky, P., Bray, J., Cooper, C. D., Marsden, B. D., Mahajan, P.,

Burgess-Brown, N. A. & Gileadi, O. (2010). J. Struct. Biol. 172,
3–13.

Slabinski, L., Jaroszewski, L., Rodrigues, A. P., Rychlewski, L.,
Wilson, I. A., Lesley, S. A. & Godzik, A. (2007). Protein Sci. 16,
2472–2482.

Smialowski, P., Schmidt, T., Cox, J., Kirschner, A. & Frishman, D.
(2006). Proteins, 62, 343–355.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P. &
Feuston, B. P. (2003). J. Chem. Inf. Comput. Sci. 43, 1947–
1958.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory.
Berlin: Springer.

Vapnik, V. N. (1998). Statistical Learning Theory. New York: Wiley–
Interscience.

Xiao, R. et al. (2010). J. Struct. Biol. 172, 21–33.
Yen, S.-J. & Lee, Y.-S. (2009). Exp. Syst. Applic. 36, 5718–5727.
Yu, D.-J., Hu, J., Tang, Z.-M., Shen, H.-B., Yang, J. & Yang, J.-Y.

(2013). Neurocomputing, 104, 180–190.
Zhang, Y., Zhang, D., Mi, G., Ma, D., Li, G., Guo, Y., Li, M. & Zhu, M.

(2012). Comput. Biol. Chem. 36, 36–41.

research papers

Acta Cryst. (2014). D70, 627–635 Jahandideh et al. � XtalPred-RF 635

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5222&bbid=BB50

